A Ruthenium Bipyridyl Molecular Dye Sensitizer and an Excited-State Intermolecular Proton Transfer-Active Colorimetric Probe for Anions, with High Affinity Towards CN− in DMSO

نویسندگان

چکیده

A ruthenium bipyridyl-dye sensitizer (N) based on the naphthyl-thiazole anchoring-ancillary ligand was synthesized and characterized using spectroscopic methods of UV–Vis, 1H NMR, FTIR fluorescence. The functional properties N were investigated through its photoinduced intramolecular charge transfer mechanisms. Subsequently, displayed interesting transfer-based (ESIPT) that are complementary to molecular photovoltaic chemosensing properties. studied in dimethyl sulfoxide (DMSO), due polar nature solubility dye. Dye exhibitions solvatochromism effect optoelectronic properties, while abilities inspected colorimetric activities, upon molar addition anions. Thus, it established a dual is potential dye with displaying high extinction coefficients acetone. In addition, found fluorometric probe selective sensitive biologically important anions CN−, F−, OH− AcO− fluorescence enhancement, as result hydrogen-bonding leading deprotonation. sensing probe, however, more strongly association CN−.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermolecular proton shuttling in excited state proton transfer reactions: insights from theory.

The mechanism of base to base intermolecular proton shuttling occurring in the excited state proton transfer reaction between 7-hydroxy-4-(trifluoromethyl)coumarin (CouOH) and concentrated 1-methylimidazole base (1-MeId) in toluene solution is disclosed here by means of a computational approach based on Density Functional Theory (DFT) and Time Dependent DFT (TD-DFT). These methods allow us to c...

متن کامل

A New Colorimetric Azo-azomethine Probe for Fluoride Ion Detection Based on the Proton Transfer Signaling Mode: Real-life Applications

Four novel receptors were designed and synthesized for colorimetric detection of F− ions. The introduction of four electron withdrawing groups into the backbone of the receptors makes the two phenolic groups efficient hydrogen bonding sites. The binding properties of receptors with anions were examined for the first time by UV–Vis, 1H NMR and fluorescence spectroscopies. The addition of F− resu...

متن کامل

Photochemistry of Pheomelanin Building Blocks and Model Chromophores: Excited-State Intra- and Intermolecular Proton Transfer.

Pheomelanins, the epidermal pigments of red-haired people responsible for their enhanced UV susceptibility, contain 1,4-benzothiazines and 1,3-benzothiazole as main structural components. Despite the major role played in pheomelanin phototoxicity, the photoreactivity of these species has so far remained unexplored. Static and time-resolved fluorescence spectroscopy was used to identify excited-...

متن کامل

Hydrogen Bonds in Excited State Proton Transfer.

Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and pri...

متن کامل

Elementary steps in excited-state proton transfer.

The absorption of a photon by a hydroxy-aromatic photoacid triggers a cascade of events contributing to the overall phenomenon of intermolecular excited-state proton transfer. The fundamental steps involved were studied over the last 20 years using a combination of theoretical and experimental techniques. They are surveyed in this sequel in sequential order, from fast to slow. The excitation tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chemistry Africa

سال: 2021

ISSN: ['2522-5766', '2522-5758']

DOI: https://doi.org/10.1007/s42250-021-00299-9